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Abstract. This paper describes experiments with the automated theo-
rem prover SETHEQO. The prover is applied to proof tasks which arise
during formal design and specification in Focus.

These proof tasks originate from the formal development of a commu-
nication protocol (Stenning protocol). Its development and verification
in Focus is described in “C. Dendorfer, R. Weber: Development and
Implementation of a Communication Protocol — An Fxercise in Focus”
[DW92a]. A number of propositions of that paper deal with safety and
liveness properties of the Stenning protocol on the level of traces. All
given propositions and lemmata could be proven automatically using
the theorem prover SETHEO.

This paper gives a short introduction into the proof tasks as provided in
[DW92a]. All steps which were necessary to apply SETHEO to the given
proof tasks (transformation of syntax, axiomatization) will be described
in detail. The surprisingly good results obtained by SETHEO will be
presented, and advantages and problems using an automated theorem
prover for simple, but frequently occurring proof tasks during a formal
development in Focus, as well as possibly ways for improvements for

using SETHEO as a “back-end” for Focus will be discussed.

1 Introduction

During a formal development of a specification, the correctness of each step has
to be proven. Many of these proofs are quite simple — when done by hand they
require only few lines. Nevertheless, all these proofs have to be carried out on
a highly formal level. This tends to be very time-consuming and error-prone,
since a large number of proof tasks occur even in small specifications. This is
especially the case, if during development parts of the specification are changed,
and all the proofs have to be made again.

* This work has been carried out within the Sonderforschungsbereich SFB 342
“Werkzeuge und Methoden fir die Nutzung paralleler Rechnerarchitekturen” funded
by the Deutsche Forschungsgemeinschaft.



For this kind of small proof tasks, the application of an automated theorem
prover would be of great value.

In order to evaluate how the automated theorem prover SETHEO, an auto-
mated theorem prover based on the Model Elimination Calculus (for details see
[LSBB92]), can be applied to such proof tasks, this case study has been made.
As the basis for the experiments, the formal development of a communication
protocol (Stenning protocol) carried out in Focus (on the level of traces) has
been used. Its development and verification in the formal design method Focus
is described in [DW92a] and [DW92b], from which all formulae and necessary
information has been extracted.

Here again, we stress that this paper does not describe a case study on how
Focus can be used to develop and refine specifications of a protocol. Rather, we
take a given specification and study, how and if SETHEO can prove automatically
the proof obligations present in the specification.

This paper proceeds as follows: first, we give a short introduction into the
problem, the specification of the Stenning protocol (on the level of traces) and
its refinements. We list all operators, liveness and safety properties which form
the basis for the proof tasks to be tackled by SETHEO. Then, we describe all
steps necessary to prepare the proof tasks for SETHEO (transformation into
FOL, transformation of the notation, axiomatization, conversion into clausal
form), and present the results of experiments carried out. We conclude with a
summary of the experience made during this case study and focus on work to
be done which will lead to the development of methods and heuristics for use of
SETHEO during the development process carried out in Focus. The Appendix
lists all axioms and formulae which have been used. The SETHEO representation
of these formulae can be obtained via e-mail from the author.

We assume that the reader is familiar with the basic properties of SETHEO
as well as some basic notions of Focus. For details on SETHEO, we refer to
e.g., [LSBB92, GLMS94, LMG94], for an overview on Focus see e.g., [BDDT93,
DDW93]. [Sch94b] contains a detailed description of this case study which in-
cludes all proofs found by SETHEO and all used formulae in SETHEO’s input
syntax.

2 The Proof Tasks

The given proof tasks originate from a case study about the specification of the
Stenning protocol [SteT6]. The Stenning Protocol ensures reliable communication
of upper layer data units (UDU)? using an unreliable transport medium (“lower
layer”; see Figure 1). The medium can loose packages (“lower layer data units”,
LDU) or permute the sequence of packages. Reliable communication is accom-
plished by adding a unique sequence number to each UDU and by introducing
acknowledge messages: each package is sent repeatedly, until an acknowledge
message with the correct sequence number is received by the transmitter.

2 These data units are seen as black boxes and are not further specified.



Although the application of SETHEQO was carried out without detailed knowl-
edge about the Stenning protocol or Focus (and how the protocol was specified),
we give a short introduction on how the Stenning protocol was specified and this
specification refined.

The development of the specification in Focus starts from an abstract de-
scription of the services provided by the upper layer and those provided by the
lower layer (level of transport medium). These services are depicted in Figure 1
and will be described below. Focus covers all steps of the development from
a non-constructive global specification down to an executable program. Several
design steps are performed to accomplish the executable program.

Here, we focus on the first steps, namely the refinement of the global re-
quirements specification (a trace specification) to a modular requirements spec-
ification (also a trace specification). This refinement process is necessary, since
the (global) requirements of the upper layer cannot be separated directly into
requirements of the transmitter, the receiver, and the transport medium. This
process which will be also sketched in the following is described in detail in
Chapter 3 of [DW92a] and the propositions shown there are the basis for the
proof tasks of our case study.

Trace logic 1s used to specify the systems requirements. A trace specification
states requirements for histories (“traces”) of a distributed system as a sequence
of actions.

The situation which we are dealing here is shown in Figure 1. The actions of
that system are: snd(d) and rec(d) (send/receive an upper layer data unit, d €
UDU), getr(x) and putp(x) (send/receive a lower layer data unit, € LDU),
and getr(ack) and putp(ack) to receive (and send respectively) an acknowledge
message (over the transport medium)3.

Then, a trace is a finite (or infinite) sequence of such actions. The require-
ments of the protocol are given as a set of liveness and safety properties using
predicate logic formulae, specifying “allowed” traces.

Before we sketch the refinement of the specification and the resulting proof
tasks, we give a list of operators working on traces (taken from [DW92a]*; ¢, u, v
are traces, a,b, ¢ are actions):

t-u, a-t denotes concatenation of traces or actions with traces.

— t C u means “trace t is a prefix of u”.

— #£t denotes length of ¢. If the trace is infinite, #¢ = co.

— {ag,...,a,) denotes the trace consisting of actions ag, ..., dn.

— t[k] denotes the k-th element of ¢ (strong definition).

— a(ot denotes the filtered trace ¢ that contains only actions a. E.g., Snd(©t
results in a trace, containing snd-actions only.

— a in t holds exactly, if action a occurs in trace t.

— {d, k) denotes a pair, consisting of a piece of data d and an integer k.

? The set of all actions of a given kind is defined as
Snd := {snd(d)|d € UDU}. Rec, Getgr, Putr are defined in a similar way. Further-
more, a clock action “y/” is defined.

* This report also contains detailed definitions of these operators.



snd(d) rec(d)
upper layer

transmitter receiver

put(z) getp(ack) put 5 (ack) getp(z)

medium (lower layer)

Fig.1. The Stenning Protocol (Fig. 1 from [DW92a]),d € UDU,z € LDU

The Focus-specification of the Stenning protocol starts with services which
are provided by the upper layer and the lower layer (see Fig. 1). Those provided
on the upper layer (“reliable communication”) are specified in the liveness prop-
erty UL and the safety property US. All properties have been directly taken
from [DW92a] and are shown for reference in Table 1 and Table 2. UL means
that the number of packages (UDU’s) sent is equal to the number of received
packages, i.e., no package has been lost. IS expresses that nothing “wrong”
is received. The properties LL', LL? and LS, LS? specify the behavior of the
transport medium (in both directions): LS1? states that if a data package (LDU)
is received on one side, it must have been put previously onto the medium on the
other side. However, it does not say that any sent package must be also received,
losses are possible. LLY? specifies that the medium is not broken forever (if we
have sent an infinite number of packages, then an infinite number of packages is
received after an infinite number of clock-cycles).

The refinement of the specification with the goal of a modular requirements
specification is performed in several steps. All requirements which are not local
to the receiver or the transmitter, or which are not provided by the medium,
have to be refined. In [DW92a] three steps are performed, namely

1. introduction of sequence numbers (Proposition 3.1)°,
2. introduction of acknowledge messages (Proposition 3.2), and
3. complete localization (Proposition 3.3)

In Stepy, the introduction of sequence numbers (for each d € UDU, we send
a pair {(k,d) where k is a natural number), two safety properties 57,57 and
three liveness properties are introduced: S; states that an UDU is given to the

® Each proposition (number in parenthesis from [DW92a]) shows that a given refine-
ment is appropriate, i.e., that safety- and liveness properties are not violated.



UL(t) = #(Rec®t) = #(Snd®1)
LLY(t) = (#(putp(e)©t) = 00 = #(get (e)O1) = 00) A #(/O) = o0
LIZ(t) = (#(putg(e)©t) = 00 = #(getr(e)Ot) = 00) A #(/©1) = 0
L1(t) = data(Snd@©t) 3 {(do,...,dn) = Yk < n:puty((k,di)) mn t
Lo(t) = puty((k,d)) in t = getp((k,d)) in t
La(t) = (Vk < n:getp((k,di)) in t) = data(Rec©t) O {do,...,dn)
L4(t) = puty((k,d)) in t = getr(ack(k)) in t
Lo(t) = #(Snd@1) > k A=A, k) A #(/O1) = 0o =

whereA(t, k) =3s : s getp(ack(k)) CtA#(Snd©s) > k

Le(t) = #(getr((k, d))©1) = oo = #(put g(ack(k))©Ot) =

Table 1. Liveness Properties

US(t)=VsCt:data(Rec©s) C data(Snd©s)

LS' (1) = Vs Ct:gety(e) in s = putp(e) in s

LS2(t) =VsCt:getp(e) in s = puty(e) in s
S1(t) = Vs C t: data(Rec®©s) = (do,...,dn) = Vk < n:getp((k,di)) in s
S2(t) = Vs C t:putp({(k,d)) in s = (Snd©s)[k] = snd(d)
S3(t) = Vs Ct:putg(ack(k)) in s = 3d : getz((k,d)) in s

Table 2. Safety Properties

upper layer only (on the receiver side), if all messages with a smaller sequence
number have already been received (gety). S1 is local to the receiver. Sy (local
to the transmitter) requires the transmitter to put packages onto the medium
only (Puty), if they contain the correct sequence number and have already been
sent by the upper layer.

L1 (local to transmitter) expresses that when an UDU has been sent, it will
eventually be put onto the medium; whereas Lz (local to receiver) describes
that all data packages which are delivered by the medium (Getg) are eventually
received on the upper layer. L, states the liveness of the medium.i.e., all packages
put onto the medium are eventually received. Although this requirement is local
(to the medium), the medium “does not support it” [DW92a]. Therefore, Lo
must be further refined. Before doing so, it must be ensured that the properties
just described plus the properties of the medium (LS?, LL?) allow for a reliable
communication. Given

Stepi(t) = LST () ALS*()ANLL* @) ALL*(t) AS1 () AS2 () A L1 () A La(t) A La(t)

we must show: Step; (t) = US(t) AUL(t). This comprises our first proof obliga-



tion (Proposition 3.1).

In the next refinement step (Steps) acknowledge messages are introduced,
replacing Lo by Ss and Lys: Sz (local to the receiver) states that a message (with
sequence number k) must have been received (Getg), before the corresponding
acknowledge message can be put on the medium. L4 (not local, will be refined
in Steps) expresses that every piece of information put onto the medium by the
transmitter will eventually get its corresponding acknowledge message.

Our second proof task (Prop. 3.2 in [DW92a]) is to show Steps = Step;.
Since only La was replaced, it is sufficient to prove Steps(t) = La(t). In general,
each refinement step is characterized by a conjunction of certain liveness and
safety properties:

Stepi(t) = /\ Lj(t) A /\ Sk(t) A LL'(t) A LL*(t) A LS*(t) A LS*(2).

Then, the proof tasks have the form: Step;(t) = Step;—1(t). For reference, Ta-
ble 3 shows the definition of all steps.

Steps replaces Ly by two additional liveness properties Ls (local to trans-
mitter), and Lg (local to receiver)®. Then, all properties of Steps are either
local to the transmitter, to the receiver, or to the medium. Furthermore, the
requirements for the medium is supported by it. Steps comprises the goal of the
refinement, a modular requirements specification.

All properties just described have been taken directly from [DW92a] and form
the basis of the proof tasks, tackled with SETHEQO. These tasks (in some cases,
more than one proof task arises from one proposition, e.g., by splitting “<” into
the “<” and the “=” case) are listed in Table 4. We furthermore processed two
additional lemmata which have been defined and used in [DW92a].

Step1(t) = LSV (1) A LI (#) A S1(t) A Sa(t) A Li(t) A La(t) A La(t)
Stepa(t) = LSV (1) A LLY?(#) A S1(t) A Sa(t) A Sa(t) A Li(t) A La(t) A La(t)
Stepa(t) = LSV (1) A LLY?(#) A S1(t) A Sa(t) A Sa(t) A La(t) A Ls(t) A Le(t)

Table 3. Definition of the refinement steps

6 Description of Lz and Lg from [DW92a]: “Requirement Ls is a little bit intricate. Tt
might be the case that some acknowledge ack(k) arrives at the transmitter before the
k-th message has actually been sent. The formula A(¢, k) says that there has been a
“proper” acknowledgement for the k-th message, i.e., one that did not occur before
at least & messages have been sent to the transmitter. So Ls says that if at least k
UDU’s are sent and the k-th UDU has not got a “proper” acknowledgement yet, then
the transmitter will send some not “properly” acknowledged UDUs (not necessarily
the k-th one) infinitely often. [...] Property Lg expresses that if the receiver gets
an information infinitely often, it will also send the corresponding acknowledgement
infinitely often.”



task 1 Prop. 3.1 |Step1(t) = US(t)

task 2 Prop. 3.1 |[Stepi(t) = UL(t) (strong)

task 3 Prop. 3.2 [Step2(t) = Step1(t) (ie. L2(t))

task 4 Prop. 3.2 |task 3 without Lemma 3.4

task 5,6,7|Prop. 3.3 |Stepa(t) = Stepa(t) (i.e. L1(t) A L4(2))
task 8 Lemma 3.4|Lemma for Prop. 3.2

task 9,10 |{Lemma 3.5|Lemma for Prop. 3.3

Table 4. Proof tasks and their definitions

3 Formalization for SETHEO

A transformation of the given proof tasks into a representation suitable for
SETHEO is accomplished in 4 steps:

1. Transformation into First Order Predicate Logic (FOL): all axioms, theo-
rems, and lemmata must be represented in first order predicate logic.

2. Transformation of the notation: the entire formula must be represented in a
syntax which is readable by SETHEO.

3. Axiomatization of the underlying theory: for all operators axioms describing
all properties of that operator must be added.

4. Transformation into clause normal form (CNF): the formula must be trans-
formed into a set of clauses and the quantifiers must be removed by Skolem-
ization. For this task, we used a standard algorithm (see e.g., [Lov78]).

In the following, we will describe each of the steps in detail. Since all formulae
in this case study already were available in First Order Logic, the first step is
skipped.

3.1 Transformation of the Notation

The aim of this step is to transform all formulae (in the original notation) into
a syntactical form which is readable by SETHEO.

The major part of this step involves the decision which operator (or function
symbol) is represented as a predicate symbol, and which symbols are written
as (syntactic) function symbols. Because of better readability, we have selected
equality (=), and all relational binary operators (i.e., <,in, >, C) to be repre-
sented as predicate symbols of arity 2 (“equational representation”). This means
that an expression a = b is written as equal(a,b). All other symbols occurring
in the formulae are transformed into pre-fix function symbols or syntactic con-
stants. Table 5 gives the relation between the operators as used in [DW92a],
and their representation for SETHEO as predicate and function symbols. For
example, Property Ly is written in SETHEO syntax as follows:

forall T forall K forall D
( in(putt(pair(X,D)),T) -> in(getr(pair(X,D)),T))



predicate symbols function symbols

in [DW92a]|SETHEO input|lin [DW92a] |[SETHEO input
A<B less(A,B) AQB £ilt(A,B)
Ain B in(A,B) getp(A), getp(A) [getr(h), gett(h)
A>B gt (A,B) putp(A), puty(A)|putr(A), putt(h)
A=18B equal (A,B) (do,...,dn) data_sequence(T,l\I)|
ACB ispre(4,B) A-B cons(A,B)

data(A) data(A)

(k, d) pair(k,D)

snd(d) snd_data(D)

Snd snd

Rec rec

T[n] nth(T,N)

o0 inf

Table 5. Transformation of notation: list of predicate and function symbols

3.2 Axilomatization

Finding the appropriate set of axioms for all operations and relations is an ex-
tremely difficult task for any application of a theorem prover. A number of im-
portant decisions must be made here: which kind of axiomatization is to be used
for which subset of operations and relations, and which axioms (and lemmata)
are to be added to the formula.

The aim of this study has been to find proofs for the given proof tasks,
using SETHEO. Therefore, we started with a small set of “common” axioms (for
equality) and added more axioms and primitive lemmata “by need”; lemmata of
which it was thought that they might be helpful for the current proof task. Since
these lemmata are quite obvious and directly follow from the definition of the
operators, we will call them high-level azioms. However, these axioms needed for
our proof tasks are often rather weak (e.g. V¢, a: #(a(Ot) = c0o = a in t, i.e., if
an action occurs infinitely often in a trace, it occurs at least once in that trace).
Those axioms are too weak to be useful in a general context.

As a result, we obtained a set of axioms (listed in Appendix A) which allows
to prove the given set of proof tasks, but we do not have a full-fledged set of
axioms, defining all properties of the operations and relations.

4 Experiments and Results

In this section, we will describe results of the SETHEQO experiments made with
the proof tasks task 1 to task 10, after all steps, described in the previous
section have been performed.

Although the SETHEO system allows to set a large variety of parameters
(e.g., different ways of performing iterative deepening), default parameters have



been used for this case study”. This parameter setting results in an iterative
deepening over the depth of the tableau (A-literal depth). Only in those cases,
where SETHEO did not find the proof within a few seconds, two additional
techniques have been used to tackle the problem: enabling the additional “fold-
up” inference rule (see [LMG94]), and using the preprocessor DELTA. DELTA
[Sch94a] generates selected unit clauses in a bottom-up way during the prepro-
cessing phase. These are added to the formulae before the top-down search with
SETHEO starts.

Table 6 gives an overview over the results of the experiments. Run-times
are given in seconds and have been obtained on a sun sparclQ. For each proof
task, we give the number of clauses after transformation into clausal form, the
run-time for SETHEO (V3.2) (and DELTA) in seconds, the necessary resources
(fold-up, DELTA, or “~” for standard options), and the number of inferences
(Model Elimination extension and reduction steps) of the proof.

This table, however, does not reflect the actual overall time (needed to find
the axioms, to debug the formula, and to make preliminary experiments). The
figures in this table just show that, given an appropriate set of axioms, SETHEO
can find the requested (non-trivial) proofs automatically within short run-times.

An estimation of the time needed for the entire case study is difficult to give
because the author did not log the sessions for this case study. In total, this
work was completed within a few days. Major time-consuming tasks were (in
decreasing order): setting up an environment (“infra-structure”) to keep all for-
mulae and results, keeping all files and formulae consistent, debugging formulae
(find out why things went wrong and correct the formulae (mostly mis-prints)),
finding and formulating the appropriate axioms, and checking the proofs for cor-
rectness (in order to detect possible flaws in the axioms or theorems). Below,
these 1ssues will be discussed in detail.

5 Experiences & Future Work

The entire case study could be carried out without a detailed knowledge of
Focus and the problem domain (communication protocols in our case). For the
axiomatization (see below), only a knowledge about the operators used in the
proof tasks had been necessary.

In the following, we will summarize the experiences made during each step
of formalization and execution of the proof tasks by SETHEO. Furthermore, we
try to give hints how to approach such proof tasks in a methodical way. Many
of these items are well known (see e.g. [ORSvH93]) (and solved) within interac-
tive theorem proving environments. Automatic theorem provers, like SETHEO,
however do not have facilities needed for a case study like this. Rather, ATPs

" The default parameters of SETHEO are: inwasm -cons, wasm -opt, and sam -cons
-dr. They are used automatically, when the command setheo is called. For further

details see e.g., [LSBB92, LMG94, GLMS94] or the manual pages of SETHEO.



proof task|# clauses|run-time|resources length of proof

[s] total|[ ME-Ext|ME-Red
task 1 23 0.2]- 10 9 1
task 2 22 0.2]- 6 5 1
task 3 24 0.6|fold-up 18 18 0
task 4 23 7.7|DELTA 20 20 0
task 5 25 17.0|DELTA 20 20 0
task 6 40 8.0(— 20 20 0
task 7 37 0.4[- 6 6 0
task 8 24 0.2]- 11 11 0
task 9 26 0.1(- 3 3 0
task 10 24 0.1(- 10 10 0

Table 6. Experimental results (run-times of SETHEO on a sun sparc 10)

in general only provide an efficient search algorithm and assume that the enire
(and error-free) formula is given to the prover.

Transformation into FOL. All formulae in this case study had already been
given in First Order Predicate Logic. This has been extremely helpful, because in
many cases, properties on the trace level cannot (or can not be easily) represented
in pure FOL. Then, these properties are specified using Higher Order constructs.
Typically for that are quantifiers ranging over predicate symbols (i.e., operations
and relations), or induction.

Although we believe that many such constructs can be transformed (auto-

matically or manually) to FOL formulae, much work will have to be done in that
area.
Transformation into SETHEO Syntax. Essentially, this step is a straight-
forward syntactic transformation of symbols for operations and relations into
predicate symbols and syntactic function symbols (e.g., A©B into £ilt(4,B)).
The selection of which operations are to be represented by predicate symbols
and which are to be represented by function symbols have been made in a very
simple, straight-forward way.

Nevertheless, this transformation step turned out to be very time-consuming
and error prone. A lot of typing errors have been made (e.g., typing £ile instead
of £ilt), errors which the SETHEO system does not detect (except by not find-
ing a proof): mistyped symbols are just interpreted as different symbols. Since
axioms are used in many proof tasks, it has been extremely difficult to remove
such bugs and keep all formulae in a consistent state.

This problem, however, could be solved in the course of this case study (in a
very primitive way) by keeping all axioms, theorems, lemmata, etc., in separate
files and by using standard UNIX-tools to maintain syntactic consistency. In our
case, we used the C-language preprocessor cpp to assemble the formula, sccs



to keep different versions of the axioms and theorems, and make to control the
processing of the proof tasks. Further applications now can use this primitive,
but rather helpful environment.

Axiomatization. The step of finding the right axioms and “high-level axioms”
(small lemmata) for the actual proof task is probably the most difficult problem
in applying an automated theorem prover to this kind of application. In our case
study, the most naive approach has been taken: we used an equational axiom-
atization which represents @ = b as equal(a,b). Besides standard axioms for
equality (reflexivity, symmetry, transitivity, substitution axioms), axioms and
lemmata (“high-level axioms”) have been added where necessary. Here, empha-
sis was put on a set of axioms which was suffictent to find the proofs, not one
which completely defines the operations and relations®. These high-level axioms
describe obvious features of the operators (e.g., getting the n-th value of a trace)
without the necessity to use the low-level definition of the operators. In Focus,
operators are normally defined using recursive equations. Using these defini-
tions would require induction for all (even the most trivial) proof obligations.
Therefore, high-level axioms help to avoid simple cases of induction. This is
also reflected in the original manual proofs in [DW92a] which do not require
induction.

In general, however, the maintenance of a complete and consistent set of
axioms is a hard piece of work which requires careful planning and development.
Such a set of axioms is presumably much larger than that used in our case
study. Its usage leads to a huge search space which can be handled only by (a)
selecting an “appropriate” subset of axioms, and/or (b) running SETHEO with
a fine-tuned set of parameters and search heuristics. The development of such
techniques can only come from experience gathered from further case studies.

Running SETHEO. A main goal of this case study was to show that the
automated theorem prover SETHEO is capable of tackling the given proof tasks.
Therefore, only standard parameters for SETHEO have been used. If SETHEO
could not find a proof easily, first the folding-up inference rule was activated,
and, if that was not successful, the DELTA preprocessor was activated with a
rule-of-thumb set of parameters. Although this has been done by hand in this
case study, further experiments and case studies will certainly lead to hints (and
possibly even heuristics) how the parameters of SETHEO must be set reasonably.

6 Conclusions

We have presented the results of experiments which applied the automated the-
orem prover SETHEO to given proof tasks, arising from the refinements of a
specification carried through in Focus. This specification and its refinements

8 Of course, care was taken that all axioms are consistent.



have been taken from a Technical Report [DW92a], dealing with the develop-
ment of a (Stenning) communication protocol. We have taken all propositions
and lemmata in Chapter 3 of that paper (a specification of the level of traces),
and have been able to prove all of them fully automatic. All of the 10 proof
tasks could be solved by SETHEO within several seconds on a sun sparc 10.
The obtained results are surprisingly good and show that these proof tasks are
of a size and complexity which can be handled automatically (given a proper
set of axioms). These results can be seen as a first step of successfully using
automated theorem provers for Focus.

A central goal of using an automated theorem prover like SETHEO during
the development of specifications in Focus will be the automatic processing of
stmple, but frequently occurring proof tasks. Such proof tasks tend to be tedious
when they are to be proven manually; nevertheless it is necessary to prove them
for full verification. Complicated proof tasks (requiring elaborate proof strategies
and ideas), on the other hand, will certainly have to be proven by hand in the
near future. Although the proof tasks in our case study could be solved easily,
several major (theoretical and practical) problems will have to be solved before
that goal can be accomplished.

The setup of a complete and consistent set of axioms and lemmata, together
with ways of preselecting axioms to reduce the search space; is a task which
has to be tackled as a first step. Handling of proof tasks which are still quite
simple from the human point of view, but reveal a more complex structure
than the current one (e.g., proofs containing easy types of induction) will have
to be studied next. We believe that in many cases of induction a small manual
preprocessing (e.g., saying “induction on length of trace”) is sufficient to prepare
the problem in such a way that SETHEO can solve it.

From a more practical point of view, an environment (“infra structure”) must
be set up to handle proof tasks. Although default in most interactive provers,
the following points should be looked at: a formula editor (together with a main-
tained data-base for formulae) would extremely facilitate the usage of SETHEO
on such proof tasks. Furthermore, our interactive version of SETHEO will be of
help in cases, where a proof cannot be found automatically (e.g., due to a missing
axiom). Also, the generation of counter ezamples (e.g., by a model generator) for
satisfiable theorems or during debugging of formulae would be of great interest.
A transformation of SETHEO’s proofs into a readable form (e.g., into Natural
Deduction) is almost indispensable.

However, it should be emphasized that the time to build a tool for using
Automated Theorem Proving for Focus has not yet come. The next steps will
certainly be further case studies on the level of trace specifications and with
other specification formalisms (relational, functional) which Focus provides. A
careful evaluation of the results will lead to the development of methods and
heuristics for the use of SETHEO for simple, but often occurring proof tasks
during the development process carried out in Focus.
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A  Axioms and Lemmata

Ary1 =Ve: e =2 Reflexivity of “=”
Azi: =V, y:z=y=>y==<x Symmetry of “="
Aris =V, y,z:e=yAy=z=>x =2z Transitivity of “=”
Azs =V, y,z:eCyAy=z=>zLCz Subst. of “C”
Azss =Vz,y:z2CyANyCoe=z=y Symmetry of “C”
Axsy =Vao,y:snd(x) =sndly) =2z =y Monotony of snd
Az =Var,y:x =y = getg(x) = getp(y) Subst. for getp
Axss =Ve,y,z: e =y = (z,2) = {(2,y) Subst. for ()
Azay =V, y,z:ztnyAy=z==x1in z Subst. for in
Axsy =Va,y:x =y = putp(x) = putp(y) Subst. for puty
Axg1 =Va, k:data(z[k]) = (data(z))[k]
Axgy =Vt,n k, 2z s: strong def. of “[]”

tCsAk<n=(dy... dy)[k]=s[k]
Axgs =Va,y:x = snd(y) = data(x) =y data(snd(d)) = d
Ax7y =Vs, k,d: (SndQs)[k] = snd(d) = #(Snd@Qs) > k strong def. of “[]”
Azxg1 =Vs,z,t:s-aCt=zint action in trace
Aoy =Vt,a:#(aQt) =c0o=aint action in trace
Arijp1 =Vt :tCt reflexivity of “C”
Az111 =Vt,n: {do, ..., dy) C data(Snd@t) =

#(Snd@t) > n definition of trace

Az121 =Vs,n,d, k: (k <n = (Snd@s)[k] = snd(d))
= (do,...,dn) C data(Snd@s)
Azis1 =V, y:z>y=>y<cz combine > with <

B Lemmata from [DW92]

Lemmagz .4 =Vt k,d, d' :putp({k,d)) in t Agetg((k,d")) int = d=d
Lemmagz s =Vt k: A(t, k) < getp(ack(k)) in t

C Theorems

C.1 Task 1: Proposition 3.1

S1 A S ALSYALS? ANLiANLy ALz ANAxy A Axog A Az A Axg N Axig A Ao
= Vs,t:s Ct = (data(Rec@s) = (dy, ..., dyn) = {do,...,dy) C data(Snd@s))
Note: Here, we use the same notation of US as in [DW92a].

C.2 Task 2: Proposition 3.1

S /\SQ/\LS1 /\LSZ/\Ll/\Lz/\Lg/\Al‘l AN Axo AN Axs A Axg A Az N\ Azys =
Vi,no {dy, ..., dy) C data(Snd@t) = {dy, ..., d,) C data(Rec@t)

Note: For this proof task, a stronger version of U L is shown.



C.3 Task 3: Proposition 3.2

S ASy AS3ALSYALS? ALy AL3 ALy AAxy A Axs A Axg A Az
Axig N Axis A Lemmaz 4 = Lo
Note: Task 4 uses the same axioms as Task 3, except that Lemmas 4 is missing.

C.4 Task 5: Proposition 3.3

S1ASa ASsALSYALS? ALy AN Axy A Azg A Awg A Azg A Azs A Az

Azxig AN Az g AVt n 2 (do, ..., dy) C data(Snd@t)t

=Vt k,n:k <n= getp(ack(k)) int = putp({{do, ..., dn)[k], k) in t)

Note: The theorem to be shown is part one of proposition 3.3. Assumption
corresponds to Assumption (*) in [DW92a].

C.5 Task 6: Proposition 3.3

Si NSy ASsANLSYANLS* NLLY ANLL* ALy A Ls A Lg A Azy A Azy A AzgA
Al‘4 A Al‘g, A Al‘7 A Al‘g A Al‘lo A Al‘ll A Al‘lz ANAAN Lemmag,g,

=Vt k,n: ({do,...,dy) C data(Snd@t)TA

=k > n A —getp(ack(k)) in t A#(/(©OF) = 00) = false

Note: This proof task comprises part two of proposition 3.3. It is shown, as
in [DW92a] via contradiction. Assumption T corresponds to Assumption (*) in

[DW92a].

C.6 Task 7: Proposition 3.3

Si NSy ASsANLSYANLS* NLLY ANLL* ALy A Ls A Lg A Azy A Azy A AzgA
Al‘4 A Al‘g, A Al‘7 A Al‘g A Al‘lo A Al‘ll A Al‘lz A Al‘lg A AN

(Vt,k,n : k < n = getyp(ack(k)) in t)T = Ly

Note: Formula T corresponds to the second part of proposition 3.3 (as shown in
the previous proof task)

C.7 Task 8: Lemma 3.4
S1ASsASsALS'ALS? ALY ALs ALy A Az A Azg A Axg A AzgA
Axig A Ax19 = Lemmas 4

C.8 Task 9: Lemma 3.5

S1ASs ASsALSYALS? ALy AN Axy A Azg A Awg A Azg A Azs A AzgA
Axg N Axig N Axqo = Lemmag,g,(i)

Note: The proof task concerns the (easy) “=” direction of Lemma 3.5.

C.9 Task 10: Lemma 3.5

S1ASa ASsALSYALS? ALy A Axy A Axa A Azg A AzaA

Axs AN Axg A Ao A A2 = Lemmag 5(<=)

Note: The proof task concerns the (more difficult) “<” direction of Lemma 3.5.

The predicate A 1s expanded.
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